

Accelerating Health Care Improvement using Systems Engineering

Karim Boustany, PhD, MSIE, BE

Mini-Bio

- PhD in I.E. from Purdue University
- Certified in Lean Healthcare Black Belt
- Speak English, French, Arabic, Spanish, and learning Russian and Mandarin
- Implementation Scientist at Center for Innovation and Implementation Science
- Process Analytics Specialist at Marion Hospital and Health Corporation (IN)
- Science and Technology Advisor

Introduction

Global Public Health Issues

http://youtu.be/NO1uXp1s6O8

Local Successful Care Models

http://youtu.be/mYSig0UHJKk

Problem Statement

How can we rapidly scale up successful care models from to larger populations?

Mission and Vision

Mission:

 To use implementation science and innovation to produce high-quality, patient-centered and cost-effective health care delivery solutions for the world.

Vision

 To assure every patient receives the most personalized, valued, safe and preeminent quality care wherever and whenever.

The Gap

- Our current research infrastructure:
 - Lacks organizational framework for harvesting local knowledge and innovation
 - Supports primarily investigator-initiated research projects
 - Is not set up for a rapid translation, implementation, and dissemination of health care delivery solutions to meet the needs of our health care services partners

The five Phases of Translational Cycle

- T0: Identify opportunities and approaches to health problems.
- T1: Move basic discovery into a potential health solution.
- T2: Assesses the value of a health solution leading to the development of evidence based practice.
- T3: Diffuse, disseminate, or implement evidence based practice.
- T4: Evaluate the impact of implementing evidence based practice on the health of population.

Current Discovery to Delivery Translational Cycle

5 How's

- 1. How can I lead a dynamic system?
- 2. How can I manage the challenges of uncertainty, variability, and dynamic interdependency?
- 3. How can I evaluate and select a meaningful change?
- 4. How can I identify early failures and successes?
- 5. How can I scale up success?

Our Goal

Support the **ever-changing** transformational needs of our local health care systems, and become a **top-ranked** "clinical laboratory" for **innovative health care delivery solutions** by developing an infrastructure to discover and implement patient-centric, value-based, sustainable, and safe models of care.

Background and Rationale

- > 3 million Medicare beneficiaries with dementia and 6 million with depression
- Conditions frequently co-occur
- Medicare costs: >30 billion \$ annually
- PCPs report inadequate time resources to manage these complex patients
- Patients with dementia have 20% higher rate of ED use than older adults w/o dementia
- Current patient population size: 2,000
- Goal: reduce symptoms and utilization
- Location: Indianapolis metropolitan area

Aging Brain Care Medical Home Computer Simulator

- Simulator is a multi-level model of the ABC program:
 - Patient: transition likelihoods & care timings
 - Process: intervention by ABC care delivery team
 - Operational: operating cost, population, staffing
 - Economic: inflation & discount rates, outcomes
- Uses original research from 2006 onward
- Passed structural and face validation cycles
- Has an embedded lab sampling mechanism

ABC

THE AGING BRAIN CARE MEDICAL HOME - COMPUTER SIMULATOR

ABC

PATIENT, PROCESS, OPERATIONAL, AND ECONOMIC FACTORS

ECONOMIC LEVEL				PATIENT LEVEL		
Healthcare Inflation Rate	Economic Inflation		Discount Rate	ABC PATIENT	NON-ABC PATIENT	
(IIOIII 0 to 1)	(from 0 to 1	.,	(Holli 0 to 1)	Following an Emergency Visit, the likelihood, from 0 to 1, of is =	Following an Emergency Visit, the likelihood, from 0 to 1, of is =	
OUTPATIENT VISIT HOSPITA		LIZATION EMERGENCY VISIT		going Home 0.6	going Home 0.5	
Minimum Cost 50.0	Min. Cost per Da	y 100.0	Minimum Cost 50.0	being Admitted 0.35	being Admitted 0.4	
				leaving ABC 0.05	expiring (or other) 0.1	
Most Likely Cost 80.0	Most Likely Cost per Day	800	Most Likely Cost 300.0	Following an Inpatient Admission, the likelihood, from 0 to 1, of is =	Following an Inpatient Admission, the likelihood, from 0 to 1, of is =	
Maximum Cost 500.0	Max. Cost per Da	7000 Tool	Maximum Cost 1000.0	going Home 0.5	going Home 0.4	
OPERATIONAL LEVEL		leaving ABC 0.5	expiring (or other) 0.6			
ABC Annual Cost 500000.0		oulation Size	Annual Hours per Staff 2000.0	Following an Outpatient Visit, the likelihood, from 0 to 1, of is = going Home 0.99	Following an Outpatient Visit, the likelihood, from 0 to 1, of is = going Home	
CARE COORDINATOR		CARE COORDINATOR ASSISTANT		being Admitted 0.01	being Admitted 0.03	
Total Number of Care Coordinators 1 3 100 Maximum Number of Visits per Day		Total Number of Care Coordinator Assistants 1 11 100 Maximum Number of Visits per Day		Average Inpatient Length of Stay 1 5.7 14 Average Time between Emergency Visits	Average Inpatient Length of Stay 1 7 14 Average Time between Emergency Visits	
1 5 12 Hourly Rate (in \$) 35.0		1 5 12 Hourly Rate (in \$) 17.0		1 365 365	1 300 365	
PROCESS LEVEL		Average Time between	Average Time between			
CARE COORDINATOR CARE COORDINATOR ASSISTANT			COORDINATOR ASSISTANT	Outpatient Visits	Outpatient Visits	
Meet with Patient after Emerge within days:			mber of Visits after Patient Enrollment 4 5	1 90 365 Average Total Time to Depart 1 1,825 1,825	Average Total Time to Expire (or other) 1 90 365 Average Total Time to Expire 1 1,825 1,825	
1 7 Meet with Patient after Inpatient within days:	90 Discharge	王 Tin	ne Interval between Visits (in days)	Number of Days until Patient's Healthcare Usage Worsens following an intervention interruption	Average Time to Enroll a New Patient following another patient's departure from ABC	
1 3 with Care Coordinator Assistan	90 it (both)	HASE Time In	terval between Routine Visits (in days) 90 365	30 30	1 30 365 lection Controls Initial Enroll as Active? 90	

ABC

THE AGING BRAIN CARE MEDICAL HOME - COMPUTER SIMULATOR

ABC

PATIENT, PROCESS, OPERATIONAL, AND ECONOMIC INSIGHTS

Lab Sampling Experiment

Independent Variables:

– Patient Population Size = 2,000

- Care Coordinators = $1 \rightarrow 5$

- Care Coordinator Assistants = $5 \rightarrow 15$

Dependent Variable:

Return On Investment (% savings / expenses)

Random Number Generation:

random seed per run

Number of Runs : 330 (10 per Scenario)

Simulator Runtime : 72 minutes

Statistical Findings

. table pair, contents(min numcc min numcca mean roitopayerforcostofabc)

sd(roitop~c)	mean(roitop~c)	min(numcca)	min(numcc)	Pair
253.3818	336.217	5	1	1
193.6971	377.0779	6	1	2
252.8822	453.6066	7	1	3
210.9832	444.5587	8	1	4
239.9711	515.3602	9	1	5
89.63446	535.0736	10	1	6
118.684	523.5916	11	1	7
209.7758	588.259	12	1	8
136.3413	551.083	13	1	9
178 3898	530.0017	14		10
145.7209	605.3631	15	1	11
163.9797	300.9023	5	Ž	12
165.4835	318.4013	6	2	13
244.5514	405.8997	7	2	14
196.196	499.0824	8	2	15
235.0602	490.3589	9	2	16
167.9797	474.3696	10	2	17
130.6546	511.1903	11	2	18
93.66481	532.5858	12	2	19
123.2592	454.7399	13	2	20
146.0487	529.0909	14	2	21
135.736	566.3605	15	2	22
221.2107	384.1864	5	3	23
184.2418	427.6495	6	3	24
184.7767	463.8857	7	3	25
161.4533	477.0465	8	3	26
132.2369	440.9914	9	3	27
150.4626	507.0577	10	3	28
115.6929	506.8737	11	3	29
152.6059	568.704	12	3	30
162.6197	492.3044	13	3	31
122.7383	486.921	14	3	32
122.5665	535.4307	15	3	33

Selecting a change in a complex adaptive health care delivery system

- A. Selecting an overall content that is based on a systematic evidence review of past research or guidelines.
- B. Develop ongoing implementation process to
 - Develop a simulation model of the local health system
 - Localize the content
 - Localize and or invent the delivery process
 - Monitor adherence to the delivery process
 - Monitor the impact of the selected change on the triple aims.
 - Detect unintended consequences

Methodology

- The theory of complex adaptive system as the frame work to represent the health care system.
- Collaborative iterative process among experts in clinical content, process mapping, and computer simulation modeling.
- Hybrid Simulation Model:
 - Agent-Based Modeling
 - Discrete-Event Simulation
 - System Dynamics

Perioperative Simulator

Objectives

- Leverage 36 operating rooms
- Enhance perioperative efficiency
- Perform more elective surgeries
- Respond to emergency cases
- Guide staffing and procurement
- Connect organizational silos
- Connect organizational layers
- Experiment in silico

Real-Time Outcomes

Demand and Supply Planning

METHODIST PERIOP MODEL
PARAMETERS

AVG SURGERY VOLUME (PER MONTH)

○ Default • Increase By ○ Decrease By

1,400

40 %

%

AM Shift

Closed

CONFIG | PARAMETERS

PM Shift

Closed

GENERAL | DEMAND | ROOMS | RESOURCES

AM Shift PM Shift **OR19 OR29** Ob/Gyn Ob/Gyn **OR20 OR30** Ob/Gyn Ob/Gyn OR21 **OR31** Ob/Gyn Ob/Gyn OR22 **OR32** Ob/Gyn Ob/Gyn OR23 **OR33 OR25 OR34**

OR35 OR36 CV \$ CV

CV \$ CV

Emergency \$ Emergency

Emergency \$ Emergency

Closed \$ Closed

Closed \$ Closed

Resource Levels

METHODIST PERIOP MODEL **CONFIG** | PARAMETERS CONFIG ● Core 1 ○ Core 2 ○ Core 3 ○ Core 4 ○ Core 5 ○ Shared Run Procedure Assessment Wrap-Up Resources Duration Duration Duration Human Other Avg Avg Avg Scrub Nurse Rooms 30 30 30 100 Min Min Min Circulating Nurse C-Arms 30 30 30 100 100 Max Max Max O-Arms Technicians 30 30 30 100 100

Outcome Dashboard

Service

Metric	Target	Over/Under Goal
Same Day Surgery - % of Patients Ready 30 min before scheduled start	95%	Under
OR % First Cases started on time	95%	Above
OR % Subsequent Cases started on time	95%	Under
Avg. Turnover Time (Previous Patient Out to Next Patient In)	30 min	Under
% of Cases turned over in <30 min	75%	Above
Avg. Turnaround Time (Prev Procedure End to Next Procedure Start)	45 min	Above

Approach

- Business Requirements
- Process Mapping
- Data Analysis
- Prototyping
- Feedback
- Validations
- Implementation
- Support

and Implementation Science

Improve Floor Plans

Web Access: http://www.runthemodel.com/models/644/

Current Facility Patient Flow

Web Access: http://www.runthemodel.com/models/647/

New Facility Patient Flow Animation

Simulation Input Dashboard

Simulation Output Dashboard

Clinics

- Patients
- Staff / Room Utilization
- Total Waiting Time / Total Time in Clinic
- Nurse Walking Distance
 Time before Doctor Consultation

Decrease Staff Fatigue

Avg. Walking Distance for a Nurse per Day (in feet)

Improve Surgery Throughput

Improve Clinic Access

To Conclude ...

- Computer simulators can assist most healthcare leaders make much more informed decisions about the future.
- The creation of simulators requires that various different disciplines collide.
- This is feasible in most markets...
- Do you have any question or comment?
- Contact me at karboust@iupui.edu