Accelerating Health Care Improvement using Systems Engineering

Karim Boustany, PhD, MSIE, BE
Mini-Bio

• PhD in I.E. from Purdue University
• Certified in Lean Healthcare Black Belt
• Speak English, French, Arabic, Spanish, and learning Russian and Mandarin
• Implementation Scientist at Center for Innovation and Implementation Science
• Process Analytics Specialist at Marion Hospital and Health Corporation (IN)
• Science and Technology Advisor
Introduction

Global Public Health Issues
http://youtu.be/NO1uXp1s6O8

Local Successful Care Models
http://youtu.be/mYSig0UHJKk
Problem Statement

How can we rapidly scale up successful care models from to larger populations?
Mission and Vision

• Mission:
 – To use implementation science and innovation to produce high-quality, patient-centered and cost-effective health care delivery solutions for the world.

• Vision
 – To assure every patient receives the most personalized, valued, safe and preeminent quality care wherever and whenever.
The Gap

• Our current research infrastructure:
 – Lacks organizational framework for harvesting local knowledge and innovation
 – Supports primarily investigator-initiated research projects
 – Is not set up for a rapid translation, implementation, and dissemination of health care delivery solutions to meet the needs of our health care services partners
The five Phases of Translational Cycle

- **T0**: Identify opportunities and approaches to health problems.
- **T1**: Move basic discovery into a potential health solution.
- **T2**: Assesses the value of a health solution leading to the development of evidence based practice.
- **T3**: Diffuse, disseminate, or implement evidence based practice.
- **T4**: Evaluate the impact of implementing evidence based practice on the health of population.

Current Discovery to Delivery Translational Cycle

Time: 17 Years
Success: 14%
Generalizability: 1%
Cost: $1 Billion

Khoury MJ et al. Genet med 2007
Westfall et al. JAMA 2007
Boustani et al. JCIA 2010
Our Dream
Future Discovery to Delivery Translational Cycle

Time: 5 Years
Success: 25%
Generalizable: 100%
Cost: $0.1 billion

T0
T1
T2
T3
T4

Simulation: Virtual Health Care System

Khoury MJ et al. Genet med 2007
Westfall et al. JAMA 2007
Boustani et al. JCIA 2010

© 2014 Karim Boustany
5 How’s

1. How can I lead a dynamic system?
2. How can I manage the challenges of uncertainty, variability, and dynamic interdependency?
3. How can I evaluate and select a meaningful change?
4. How can I identify early failures and successes?
5. How can I scale up success?
Our Goal

Support the ever-changing transformational needs of our local health care systems, and become a top-ranked “clinical laboratory” for innovative health care delivery solutions by developing an infrastructure to discover and implement patient-centric, value-based, sustainable, and safe models of care.
Background and Rationale

- > 3 million Medicare beneficiaries with dementia and 6 million with depression
- Conditions frequently co-occur
- Medicare costs: >30 billion $ annually
- PCPs report inadequate time resources to manage these complex patients
- Patients with dementia have 20% higher rate of ED use than older adults w/o dementia
- Current patient population size: 2,000
- Goal: reduce symptoms and utilization
- Location: Indianapolis metropolitan area
Aging Brain Care Medical Home Computer Simulator

- Simulator is a multi-level model of the ABC program:
 - Patient: transition likelihoods & care timings
 - Process: intervention by ABC care delivery team
 - Operational: operating cost, population, staffing
 - Economic: inflation & discount rates, outcomes

- Uses original research from 2006 onward
- Passed structural and face validation cycles
- Has an embedded lab sampling mechanism
The Aging Brain Care Medical Home - Computer Simulator

Economic Level

<table>
<thead>
<tr>
<th>Healthcare Inflation Rate (from 0 to 1)</th>
<th>Economic Inflation Rate (from 0 to 1)</th>
<th>Discount Rate (from 0 to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

outpatient Visit

<table>
<thead>
<tr>
<th>Minimum Cost</th>
<th>$59.9</th>
<th>Min. Cost per Day</th>
<th>$100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Likely Cost per Day</td>
<td>$89.0</td>
<td>Most Likely Cost</td>
<td>$100.0</td>
</tr>
<tr>
<td>Maximum Cost</td>
<td>$509.0</td>
<td>Max. Cost per Day</td>
<td>$7900</td>
</tr>
</tbody>
</table>

Hospitalization

<table>
<thead>
<tr>
<th>Minimum Cost</th>
<th>$56.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Likely Cost</td>
<td>$190.0</td>
</tr>
</tbody>
</table>

Emergency Visit

<table>
<thead>
<tr>
<th>Minimum Cost</th>
<th>$56.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Likely Cost</td>
<td>$190.0</td>
</tr>
</tbody>
</table>

Operational Level

<table>
<thead>
<tr>
<th>ABC Annual Cost</th>
<th>$590000.0</th>
<th>Patient Population Size</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Hours per Staff</td>
<td>2,000.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Care Coordinator

- Total Number of Care Coordinators: 1
- Maximum Number of Visits per Day: 100
- Hourly Rate (in $): 35.0

Care Coordinator Assistant

- Total Number of Care Coordinator Assistants: 11
- Maximum Number of Visits per Day: 100
- Hourly Rate (in $): 17.0

Process Level

Care Coordinator

- Meet with Patient after Emergency Visit within ___ days: 7
- Meet with Patient after Inpatient Discharge within ___ days: 3

Care Coordinator Assistant

- Total Number of Visits after Patient Enrollment:
 - PHASE I: 4
 - PHASE II: 5
- Time Interval between Visits (in days):
 - PHASE I: 14
 - PHASE II: 30
- Time Interval between Routine Visits (in days):
 - PHASE I: 30
 - PHASE II: 90

Patient Level

ABC Patient

- Following an Emergency Visit, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.6
 - being Admitted: 0.35
 - leaving ABC: 0.65
- Following an Inpatient Admission, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.5
 - leaving ABC: 0.9
- Following an Outpatient Visit, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.99
 - being Admitted: 0.01

Non-ABC Patient

- Following an Emergency Visit, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.5
 - being Admitted: 0.4
 - expiring (or other): 0.1
- Following an Inpatient Admission, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.4
 - expiring (or other): 0.6
- Following an Outpatient Visit, the likelihood, from 0 to 1, of ___ is =
 - going Home: 0.97

Statistical Collection Controls

- ABC Operational?
- ABC vs No ABC Comparison?
- Initial Enroll as Active?
- Warmup Period (days)
Lab Sampling Experiment

• Independent Variables:
 – Patient Population Size = 2,000
 – Care Coordinators = 1 → 5
 – Care Coordinator Assistants = 5 → 15

• Dependent Variable:
 – Return On Investment (% savings / expenses)

• Random Number Generation:
 – random seed per run

• Number of Runs : 330 (10 per Scenario)

• Simulator Runtime : 72 minutes
Statistical Findings

<table>
<thead>
<tr>
<th>Pair</th>
<th>min(numcc)</th>
<th>min(numcca)</th>
<th>mean(roitop-c)</th>
<th>sd(roitop-c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>336.217</td>
<td>253.3818</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>377.0779</td>
<td>193.6971</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>453.6866</td>
<td>252.8622</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>8</td>
<td>444.5587</td>
<td>210.9632</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9</td>
<td>515.3602</td>
<td>239.9711</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>10</td>
<td>535.0736</td>
<td>69.63446</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>11</td>
<td>523.5916</td>
<td>118.684</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>12</td>
<td>568.2596</td>
<td>209.7758</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>13</td>
<td>551.0833</td>
<td>136.3413</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>14</td>
<td>350.8617</td>
<td>178.3698</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>15</td>
<td>605.3631</td>
<td>145.7299</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>5</td>
<td>306.3623</td>
<td>163.9797</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>6</td>
<td>310.4013</td>
<td>165.4835</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>7</td>
<td>405.8997</td>
<td>244.5514</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>8</td>
<td>499.0824</td>
<td>196.196</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>9</td>
<td>490.3589</td>
<td>235.0602</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>10</td>
<td>474.3696</td>
<td>167.9797</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>11</td>
<td>511.1993</td>
<td>130.6546</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>12</td>
<td>532.5858</td>
<td>93.66481</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>13</td>
<td>454.7399</td>
<td>123.2592</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>14</td>
<td>529.0999</td>
<td>146.0487</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>15</td>
<td>566.3605</td>
<td>135.736</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>5</td>
<td>384.1864</td>
<td>221.2107</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>6</td>
<td>427.6495</td>
<td>184.2418</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>7</td>
<td>463.8857</td>
<td>184.7767</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>8</td>
<td>477.0465</td>
<td>161.4533</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>9</td>
<td>448.9914</td>
<td>132.2369</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>10</td>
<td>507.0577</td>
<td>150.4626</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>11</td>
<td>506.8737</td>
<td>115.6929</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>12</td>
<td>568.7044</td>
<td>152.6659</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>13</td>
<td>492.3044</td>
<td>162.6197</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>14</td>
<td>486.9214</td>
<td>122.7383</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>15</td>
<td>535.4307</td>
<td>122.5665</td>
</tr>
</tbody>
</table>

© 2014 Karim Boustany
Selecting a change in a complex adaptive health care delivery system

A. Selecting an overall content that is based on a systematic evidence review of past research or guidelines.

B. Develop ongoing implementation process to
 • Develop a simulation model of the local health system
 • Localize the content
 • Localize and or invent the delivery process
 • Monitor adherence to the delivery process
 • Monitor the impact of the selected change on the triple aims.
 • Detect unintended consequences
Methodology

• The theory of complex adaptive system as the framework to represent the health care system.

• Collaborative iterative process among experts in clinical content, process mapping, and computer simulation modeling.

• Hybrid Simulation Model:
 • Agent-Based Modeling
 • Discrete-Event Simulation
 • System Dynamics
Perioperative Simulator
Objectives

• Leverage 36 operating rooms
• Enhance perioperative efficiency
• Perform more elective surgeries
• Respond to emergency cases
• Guide staffing and procurement
• Connect organizational silos
• Connect organizational layers
• Experiment *in silico*
Real-Time Outcomes
Demand and Supply Planning

METHODIST PERIOP MODEL

PARAMETERS

AVG SURGERY VOLUME (PER MONTH)

- Default
- Increase By
- Decrease By

<table>
<thead>
<tr>
<th></th>
<th>AM Shift</th>
<th>PM Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR19</td>
<td>Ob/Gyn</td>
<td>Ob/Gyn</td>
</tr>
<tr>
<td>OR20</td>
<td>Ob/Gyn</td>
<td>Ob/Gyn</td>
</tr>
<tr>
<td>OR21</td>
<td>Ob/Gyn</td>
<td>Ob/Gyn</td>
</tr>
<tr>
<td>OR22</td>
<td>Ob/Gyn</td>
<td>Ob/Gyn</td>
</tr>
<tr>
<td>OR23</td>
<td>CV</td>
<td>CV</td>
</tr>
<tr>
<td>OR25</td>
<td>CV</td>
<td>CV</td>
</tr>
<tr>
<td>OR26</td>
<td>Urology</td>
<td>Urology</td>
</tr>
<tr>
<td>OR27</td>
<td>Urology</td>
<td>Urology</td>
</tr>
</tbody>
</table>

© 2014 Karim Boustany
Resource Levels

METHODIST PERIOP MODEL

CONFIG

Run

Core 1 Core 2 Core 3 Core 4 Core 5 Shared

Procedure Duration
Avg
Min
Max

Assessment Duration
Avg
Min
Max

Wrap-Up Duration
Avg
Min
Max

Human
Scrub Nurse
Circulating Nurse
Technicians

Resources

Other
Rooms
C-Arms
O-Arms

© 2014 Karim Boustany
Outcome Dashboard

Service

<table>
<thead>
<tr>
<th>Metric</th>
<th>Target</th>
<th>Over/Under Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Day Surgery - % of Patients Ready 30 min before scheduled start</td>
<td>95%</td>
<td>Under</td>
</tr>
<tr>
<td>OR % First Cases started on time</td>
<td>95%</td>
<td>Above</td>
</tr>
<tr>
<td>OR % Subsequent Cases started on time</td>
<td>95%</td>
<td>Under</td>
</tr>
<tr>
<td>Avg. Turnover Time (Previous Patient Out to Next Patient In)</td>
<td>30 min</td>
<td>Under</td>
</tr>
<tr>
<td>% of Cases turned over in <30 min</td>
<td>75%</td>
<td>Above</td>
</tr>
<tr>
<td>Avg. Turnaround Time (Prev Procedure End to Next Procedure Start)</td>
<td>45 min</td>
<td>Above</td>
</tr>
</tbody>
</table>
Approach

- Business Requirements
- Process Mapping
- Data Analysis
- Prototyping
- Feedback
- Validations
- Implementation
- Support
Improve Floor Plans

Current Facility Patient Flow Animation

New Facility Patient Flow Animation

Simulation Input Dashboard

- No-show Rate for Ped, OB, and Family Med
- No-show Rate for Internal Med
- Rate of Doctor Available Slots Booked

Simulation Output Dashboard

- Clinics
 - Staff / Room Utilization
 - Nurse Walking Distance
- Patients
 - Total Waiting Time / Total Time in Clinic
 - Time before Doctor Consultation

© 2014 Karim Boustany
Decrease Staff Fatigue

Avg. Walking Distance for a Nurse per Patient (in feet)

- Current MOB: ≈ 129 ft
- New MOB: ≈ 182 ft
- Decrease: 42%

Avg. Walking Distance for a Nurse per Day (in feet)

- Current MOB: ≈ 2941 ft
- New MOB: ≈ 4515 ft
- Decrease: 53%
Improve Surgery Throughput
Improve Clinic Access

USER INTERFACE

Appointment Request
- 8:00 - 11:00 / Hour
- 11:00 - 14:00 / Hour
- 14:00 - 17:00 / Hour

No-Show Rate (0–1)
- 0.041

Sick Patients
- 10.0 % to NP
- 70.0 % to MD

New Patients
- STOP scheduling new patient
- START scheduling new patients

Patient Characteristics
- Proportion
 - Sick: 25.0 %, 25.0 %
 - Tier 1 New: 5.0 %, 4.0 %
 - Tier 1 ReCheck: 15.0 %, 15.0 %
 - Tier 2 New: 13.0 %, 13.0 %
 - Tier 2 ReCheck: 42.0 %, 42.0 %

- Treatment Time
 - 10.0 minutes
 - 20.0 minutes

MD’s Working Schedule
- Total Number of Work Hours/Number of Patients per Day of Week
- Preferred Total Number of New Patients
- Preferred Max Number of Sick Patients

<table>
<thead>
<tr>
<th>Day</th>
<th>Sick</th>
<th>New</th>
<th>ReCheck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>7</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Tue</td>
<td>7</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

OUTCOME DASHBOARD

Total Patient Discharges (by visit type)

100% Daily Capacity
- Monday: 26.25
- Tuesday: 26.25
- Wednesday: 26.25
- Thursday: 26.25
- Friday: 26.25

MD Time Utilization

Sick Patient Discharges

© 2014 Karim Boustany
To Conclude ...

- Computer simulators can assist most healthcare leaders make much more informed decisions about the future.
- The creation of simulators requires that various different disciplines collide.
- This is feasible in most markets...
- Do you have any question or comment?
- Contact me at karboust@iupui.edu